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a b s t r a c t 

Tangential continuity at grain boundaries confers to the curvature tensor smoothness properties needed 

for the determination of the components of the disclination density tensor available from the orientation 

maps provided by electron backscattered diffraction measurements. The smoothness implied by attribut- 

ing a gradient status to the curvature tensor is overachieving and leads to uniformly vanishing disclina- 

tion density fields. We detail the appropriate field representations for the rotation and curvatures built 

from the discrete orientation data sets, as well as the relevant numerical differentiation procedures. Illus- 

trations are provided by using both simple constructed data sets and actual measurements. 
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1. Introduction 

In the theory of crystal defects, discontinuities of elastic ro-

tation fields across bounded surfaces in the material are ren-

dered continuously by smooth non-vanishing disclination density

fields ( deWit, 1970 ). Building smooth disclination density fields

from discrete orientation maps provided by electron backscattered

diffraction (EBSD) measurements, was the objective of earlier work

( Beausir and Fressengeas, 2013 ). This task raises the issues of

whether a discrete rotation data set should be regarded as reflect-

ing a continuously differentiable field everywhere or if surfaces

of rotation discontinuity exist in the material, and in the latter

case, how are the curvature and disclination density tensors fields

built at such surfaces? In practice, these issues boil down to how

numerical differentiation of the rotation and curvature data sets

should be carried out at grain boundaries. Suited algorithms were

designed in this aim in Beausir and Fressengeas (2013) and applied

to various metallic and geophysical materials, which led to physi-

cally consistent interpretations of the structure of grain boundaries

in terms of disclination density dipoles at various resolution length

scales ( Fressengeas et al., 2014; Cordier et al., 2014; Sun et al.,

2016 ). However the minimal differentiability properties required

of the rotation and curvature fields to build smooth disclination

density fields along surfaces of rotation discontinuity were not de-

tailed and the algorithms used in this work were not available.
∗ Corresponding author. 
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n regard to the growing interest in the role of elastic curvatures

nd disclinations in describing the microstructure of grain bound-

ries at various length scales (particularly for high-angle bound-

ries) ( Carter et al., 2015; Giacchino and Fonseca, 2015; Rösner

t al., 2011; Upadhyay et al., 2016 ) and their migration under stress

 Taupin et al., 2014 ), we believe that this information should be

rovided, because it is useful to experimentalists and more gen-

rally to those interested in understanding how a smooth discli-

ation density field can account for a bounded rotation disconti-

uity. In this aim, we give in Section 3 of this paper a primer on

he continuous representation of lattice incompatibility in terms of

islocation and disclination density fields, after setting up our no-

ations in Section 2 . The field representations of the rotation and

urvature data, the required differentiability and the differentiation

chemes to be used for the determination of the disclination den-

ities are then described in Section 4 . Together with disclination

ensity fields derived from EBSD maps, fields built from simple

onstructed maps are also shown in this Section for illustration of

he basic concepts. Conclusions follow. 

. Notations 

A bold symbol denotes a tensor, as in: A . When there may be

mbiguity, an arrow is superposed to represent a vector: � A . The

ranspose of tensor A is A 

t . The unit second order tensor is de-

oted I . All tensor subscript indices are written with respect to the

asis (e i , i = 1 , 2 , 3) of a rectangular Cartesian coordinate system.

ertical arrays of one or two dots represent contraction of the re-

https://doi.org/10.1016/j.ijsolstr.2018.08.015
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∀  
pective number of ”adjacent” indices on two immediately neigh-

oring tensors, in standard fashion. For example, the tensor A.B

ith components A ik B kj results from the dot product of tensors A

nd B , and A : B = A i j B i j represents their inner product. The trace

 ii of tensor A is denoted tr ( A ). The cross product of a second order

ensor A and a vector V , and the curl operation for second order

ensors is defined row by row, in analogy with the vectorial case.

or example: 

(A × V ) i j = e jkl A ik V l (1) 

( curl A ) i j = e jkl A il,k , (2) 

here e jkl = e j . (e k × e l ) is a component of the third-order alter-

ating Levi–Civita tensor X , equal to 1 if the jkl permutation is

ven, −1 if it is odd and 0 otherwise. In the component repre-

entation, the comma followed by a component index indicates a

patial derivative with respect to the corresponding Cartesian co-

rdinate as in relation (2) . A vector � A is associated with tensor A

y using the inner product of A with tensor X : 

( � A ) k = −1 

2 

(X : A ) k = −1 

2 

e ki j A i j (3) 

(A ) i j = −(X . � A ) i j = −e i jk ( � A ) k . (4) 

iven a unit vector n normal to an interface I in a domain D and

rienting I from the sub-domain D 

− to sub-domain D 

+ , the normal

art A n and tangential part A t of tensor A are 

 n = A . n � n (5) 

 t = A − A n . (6) 

or a vector V : 

 n = (V . n ) n = V n n (7) 

 t = V − V n . (8) 

he discontinuity of a tensor A at the interface I is denoted [[ A ]] =
 

+ − A 

−, where A 

− and A 

+ are the values of tensor A when eval-

ated at limit points on the interface along direction n , from the

eft in D 

− and from the right in D 

+ , respectively. 

. Continuous modeling of lattice incompatibility 

In his 1907 paper, Volterra introduced six types of line defects

n crystals ( Volterra, 1907 ). Three of them, known as dislocations,

re translational defects. The other three, referred to as disclina-

ions, have rotational character. In Volterra’s account of disloca-

ions, the displacement field u is elastic and has a constant dis-

ontinuity [[ u ]] across a surface bounded by the dislocation line,

ut the (elastic) distortion (strain ε and rotation ω) field U and

ts derivatives are continuous across this surface, except at the dis-

ocation line where a distortion singularity takes place. A line in-

egral of the distortion field along a closed curve encircling the

islocation line, i.e. a Burgers circuit, provides the discontinuity

[ u ]]. This result does not depend on the closing curve and is re-

erred to as the Burgers vector of the dislocation b = [[ u ]] . Instead

f Volterra’s representation of dislocations, where the core is seen

s a curvilinear hole and the body is multiply connected, we use

ere a continuous setting, in which the description is regularized

y viewing the body as compact and simply connected, and by ac-

nowledging the existence of a narrow but not infinitely thin core

egion where the displacement field smoothly describes the jump

 . This choice implies that the resolution length scale is shorter
han in Volterra’s description, but a Burgers circuit sufficiently dis-

ant from the core still leads to the same Burgers vector b . We

hen consider distortion fields U , sufficiently smooth everywhere,

hich are irrotational outside the core and whose non-vanishing

url defines a smooth dislocation density tensor field α in the core

egion. For small distortions, 

= curl U . (9) 

n the absence of disclinations, the (elastic) curvature tensor is the

radient of the rotation vector: κ = grad 

�
 ω , while the strain tensor

retains the smoothness needed to compute its curl. As a result,

q. (9) reads as well 

= curl ε + tr( κ) I − κt . (10)

hen disclinations are also present, an additional discontinuity

[ ω]] of the rotation tensor field ω (and vector field 

�
 ω ) exists over

urfaces S bounded by the disclination lines in the multiply con-

ected body. In practice, the surfaces S are found almost exclu-

ively along grain or sub-grain boundaries. The strength of a discli-

ation is characterized by its Frank vector � = [[ � ω ]] , i.e. by the

iscontinuity of the rotation vector over the bounded surfaces S .

herefore, the rotation is not differentiable across surfaces S and

he curvature κ ceases to be a gradient tensor. However, the strain

eld ε retains continuity across S , except at the dislocation line,

nd Eq. (10) still holds in this form. By adopting deWit’s contin-

ous setting ( deWit, 1970 ), we now acknowledge the finiteness of

he core region of the disclination, and view the rotation field as

escribing smoothly the jump � across this core. Hence, a Burg-

rs circuit sufficiently distant from the core still yields the Frank

ector �. In deWit’s representation, the curvature tensor field κ is

 sufficiently smooth field (including across surface S , in a sense

o be described below) reducing to a gradient field (irrotational)

utside the core, and whose non-vanishing curl defines the discli-

ation density tensor in the core region: 

= curl κ. (11) 

hus, the defect density tensors θ and α appear as smooth ren-

itions of the Frank and Burgers vectors ( �, b ) respectively. Of

ourse, the smoothness demanded of κ in Eq. (11) does not imply

hat it be the gradient of the rotation vector, as this would result

n θ = 0 being the only possibility. Actually, tangential continuity

f κ is required across surface S to perform the partial differen-

iations involved in Eq. (11) , but normal discontinuity is allowed,

hich reads 

[ κ]] × n = 0 , (12)

f [[ κ]] denotes the curvature discontinuity across S and n

s the normal unit vector to S . This result was shown in

ressengeas et al. (2012) and a similar result was given earlier in

charya (2007) in the context of dislocations. We summarize the

roof hereafter and adapt it to the present purposes. In Fig. 1 , we

onsider a crystalline domain D separated into two crystals D 

− and

 

+ by the boundary S . The Burgers circuit C bridges the boundary

nd limits the patch � over which we now integrate the disclina-

ion density tensor: 

= 

∫ 
�

θ. n dS = 

∫ 
C 

κ. dx . (13)

he result is the Frank vector � over surface �, and the surface

ntegral over � may be transformed into a line integral of the cur-

ature along the circuit C at the r.h.s. of this relation. By letting

(h −, h + ) and L tend to zero in Fig. 1 , the circuit C collapses to the

oint P on the boundary. As a result, the Frank vector tends to zero

n the l.h.s., while the r.h.s. tends to [[ κ]]. l . Hence, we find the re-

ation 

 l ∈ S, [[ κ]] . l = 0 , (14)
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Fig. 1. Burgers circuit C and patch � bounded by C , across the grain boundary S 

separating the crystalline domain D into two grains D − and D + . n : unit normal vec- 

tor to the boundary, l , t = l × n , orthogonal unit vectors in the boundary. 
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which is valid for all unit vectors l in the boundary S ( n . l = 0 ).

Thus, Eq. (14) reflects the tangential continuity of the curvature

tensor κ along S , and reads in a more compact form as Eq. (12) .

Summarizing the proof above, it appears that if Eq. (11) and the

representation of (elastic) curvature incompatibility by a smooth

disclination density tensor are accepted, then tangential continu-

ity of the curvature tensor across a surface of rotation discontinu-

ity should also be accepted. Normal discontinuity of the curvature

tensor is unconstrained by Eq. (14) : [[ κ]]. n may well be non-zero.

In this case, κ cannot be the gradient of the rotation, and yet the

disclination densities can be calculated. As an illustration, consider

the wedge disclination density field θ33 = κ32 , 1 − κ31 , 2 obtained

from the tilt map ω 3 and curvatures (κ31 = ω 3 , 1 , κ32 = ω 3 , 2 ) in the

plane ( e 1 , e 2 ) of the reference frame (l = e 1 , n = e 2 , t = l × n = e 3 )

shown in Fig. 1 . The tangential continuity condition (12) then sim-

ply reads: [[ κ31 ]] = 0 . Together with this condition, the minimal

differentiability requirement needed to compute the partial deriva-

tive κ31,2 across the boundary in Eq. (11) is the identity of the

derivatives κ−
31 , 2 

and κ+ 
31 , 2 

from the left and right of the bound-

ary: [[ κ31 , 2 ]] = 0 . The normal jump [[ κ32 ]] is not constrained by

Eq. (12) and may not vanish, but the computation of θ33 only re-

quires differentiation of κ32 along the boundary, which demands

sufficient smoothness within the grains, not across the boundary. 

4. Numerical schemes and examples 

As mentioned above, the rotation ω is not differentiable across

a surface of discontinuity S . However, ω remains backward-

differentiable at limit points to the left of S and forward-

differentiable at limit points to its right. Thus, numerical approx-

imations can still be used: we may employ a one-sided finite dif-

ference scheme involving backward finite differences to the left of

surface S (of the type −( f (x − �x ) − f (x )) / �x at point x, �x > 0)

and forward differences to its right ( ( f (x + �x ) − f (x )) / �x at

point x, �x > 0). In either case, no rotation value from the oppo-

site side of S is employed. Therefore, such a scheme accounts for

the rotation discontinuity and builds the curvature field κ accord-

ingly. In contrast and as detailed above, κ has sufficient smooth-

ness across surface S to allow forward differentiation both along

and across the boundary in the computation of the disclination

density tensor θ through Eq. (11) . As illustrated by the forthcom-

ing examples and results in Beausir and Fressengeas (2013) and

Cordier et al. (2014) , consistent disclination density fields are found

from discrete orientation maps when one-sided numerical differ-

entiation of the rotation data is used for building the curvature

field and forward differentiation of the latter for computing the

disclination density field. In contrast, uniformly vanishing discli-

nation density fields are obtained when forward differentiation

of both rotation and curvature fields is employed, as reported by
eff et al. (2017) and exemplified in the following. Similarly, van-

shing disclination density fields would result from using one-sided

ifferentiation of both fields. 

We now showcase these developments by first testing our al-

orithms in a constructed configuration where the results can be

imply and consistently checked. In this aim, we designed the

icrystal shown in Fig. 2 a. A tilt boundary is built along the e 1 
irection between the top and bottom grains. The pixel size is as-

umed to be �x 1 = �x 2 = 1 μ m in both directions ( e 1 , e 2 ), and

he tilt angle is 45 ° around the direction e 3 . The orientation an-

le is kept constant throughout the bottom and top grains, ex-

ept for a sub-grain with a ± 3 ° tilt disorientation across the sub-

rain boundaries. The grain and sub-grain boundaries are normal

o the unit vectors ( e 1 , e 2 ) and oriented by these vectors. This

lementary but revealing configuration allows illustrating the re-

ations between the disclination density field and the disorien-

ation discontinuities along the boundary, as well as highlighting

he differences in the algorithm outcomes. The only non-vanishing

omponents of the rotation vector and disclination density ten-

or accessible from this orientation map are respectively ω 3 and

he wedge-disclination density θ33 already discussed. As shown

bove, the tangential continuity condition (12) along the bound-

ry reads [[ κ31 ]] = 0 . We note at once from Fig. 2 a that, from both

orward and one-sided differentiation of the elastic rotation field,

31 = ω 3 , 1 = 0 at all pixels in the bottom grain, and κ31 � = 0 along

wo rows in the top grain, as shown in the panel Fig. 2 b. If one-

ided differentiation is adopted along the grain boundary, then

32 = ω 3 , 2 = 0 at all pixels, whereas κ32 � = 0 along the boundary if

orward differentiation is used, as shown in panel Fig. 2 c. Consider

alculating the disclination density at all points by using forward

ifferentiation for both rotations and curvatures. For example, at

ixel A surrounded by pixels ( B, C, D ), we find successively: 

32 , 1 (A ) ∼= 

1 

�x 1 
( 
ω 3 (D ) − ω 3 (B ) 

�x 2 
− ω 3 (C) − ω 3 (A ) 

�x 2 
) 

= (0 . 733 − 0 . 785) rad.μm 

−2 

κ31 , 2 (A ) ∼= 

1 

�x 2 
( 
ω 3 (D ) − ω 3 (C) 

�x 1 
− ω 3 (B ) − ω 3 (A ) 

�x 1 
) 

= (0 . 0 0 0 − 0 . 052) rad.μm 

−2 (15)

θ33 (A ) = κ32 , 1 (A ) − κ31 , 2 (A ) = 0 . 

uch a result is obtained as well at all other pixels and the θ33 

isclination density field is therefore uniformly vanishing, as ex-

lained above. Note that we stop differentiating one row before the

icrystal edges to avoid spurious values along these edges. Now

onsider calculating θ33 by using one sided-differentiation of the

otation field in building the curvature fields and forward differen-

iation of the curvature fields in constructing the disclination field.

rom the above results, we find at pixel A : 

32 , 1 (A ) = 0 

κ31 , 2 (A ) ∼= 

−ω 3 (B ) − ω 3 (A ) 

�x 1 �x 2 
= −0 . 052 rad.μm 

−2 (16)

θ33 (A ) = −κ31 , 2 (A ) = 0 . 052 rad.μm 

−2 . 

hen conducted at pixel B , the calculation leads to θ33 (B ) =
0 . 052 rad. μm 

−2 , and to θ33 = 0 at all other pixels. Note that the

isclination density values are affected at the pixel centers and

hat the values between pixels may be obtained by using inter-

olation procedures: As a consequence, the disclination density

alue at a boundary point, for example between pixels A and C ,

s common to both grains and is a property of the interface. The

ositive θ33 ( A ) and negative θ33 ( B ) spots form a wedge disclina-

ion dipole terminating the bounded surface AB along the grain

oundary, across which a discontinuity [[ ω 3 ]] = −3 ◦ of the rota-

ion takes place. The Frank vectors of the disclinations are there-
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Fig. 2. Constructed bicrystal with 45 ° tilt boundary. (a) Configuration. Euler angles: bottom (green) grain (45 °, 0 °, 0 °), top (dark blue) grain (0 °, 0 °, 0 °), (pale blue) sub-grain 

inserted in top grain (3 °, 0 °, 0 °). The first Euler angle (precession) is measured around unit vector e 3 in the orthonormal sample frame ( e 1 , e 2 , e 3 ). The pixel size is 1 μ

m; (b) Curvature field κ31 derived from one-sided differentiation of the elastic rotation field ω 3 ; (c) Curvature field κ32 derived from forward differentiation of the elastic 

rotation field ω 3 ; (d) Wedge disclination density θ33 derived from forward differentiation of the curvature fields ( κ31 , κ32 ). In panels (b,c,d) numbers indicate the non-zero 

variable values at the appropriate pixels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. EBSD data in a rolled 99% commercially pure Al reduced by 50%. Reference frame, e 1 : rolling direction, e 2 : normal direction, e 3 : transverse direction. Dimensions of 

the maps: (17.3 μm × 3.5 μm). The vertical dashed lines underline correlations between corresponding features in panels (a) through (d). (a): Grain-to-grain disorientation 

along a high angle grain boundary (55 ° through 60 °). (b) κ31 curvature field obtained from one-sided differentiation of the elastic rotation field ω 3 ; (c) κ32 curvature field 

obtained from one-sided differentiation of the elastic rotation field ω 3 ; (d) θ33 wedge disclination density field obtained from forward differentiation of the curvature fields; 

(e) θ33 wedge disclination density field obtained from one-sided differentiation of the curvature fields. Angles provided in degrees, curvatures and disclination densities in 

rad. μm 

−1 and rad. μm 

−2 units respectively. 
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n  

b  

r  

n  

t  
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f  
ore � = �3 e 3 with �3 = [[ ω 3 ]] = ±3 ◦. These results are consis-

ent with the definition and properties of disclination dipoles. Cut-

ing the bicrystal along the boundary from B to the right edge to

elax the incompatible strains associated with the negative discli-

ation in B would lead to a 3 ° angular sector overlap of the top and

ottom crystals. Further cutting the bicrystal between A and B to
elax the incompatible strains associated with the positive discli-

ation in A would additionally lead to a 3 ° angular sector gap be-

ween the two crystals, so that welding back these crystals would

nly require a 3 ° rotation of the segment AB . 

We now discuss the determination of disclination density fields

rom an orientation map obtained from actual EBSD measure-
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ments. Although the data set is more complex and extensive, the

algorithms are the same as in the above example. The measure-

ments were carried out on a rolled 99.9% commercially pure alu-

minum sample (50% rolling ratio in one pass), using a Zeiss ULTRA

55 scanning electron microscope. The plane of the maps in Fig. 3 is

normal to the transverse direction in rolling and the pixel size is

100 nm. All components ω i , ∀ i ∈ (1, 2, 3) of the rotation vector are

available from the orientation map, and the panel Fig. 3 a shows

the grain-to-grain disorientation along a grain boundary. The ac-

cessible disclination density components are θi 3 = κi 2 , 1 − κi 1 , 2 , ∀ i ∈
(1 , 2 , 3) , where κi 1 = ω i, 1 , κi 2 = ω i, 2 but here, we again focus on

the wedge disclination density θ33 for the sake of conciseness. The

( κ31 , κ32 ) curvature fields obtained from one-sided differentiation

of the rotation component ω 3 are shown in panels Fig. 3 (b,c). If

one-sided differentiation of these curvature fields is also employed

for constructing the disclination density field θ33 , then θ33 = 0 is

found uniformly at all points, as shown in panel Fig. 3 e and as al-

ready discussed above. In contrast, the values of ( κ32,1 , κ31,2 ) are

different when forward differentiation is used, and the disclination

density θ33 is non-vanishing along the boundary, as panel Fig. 3 d

shows. A configuration similar to the simple example discussed in

Fig. 2 can be spotted between the vertical dashed lines. Indeed, al-

though its normal is not known, the grain boundary lies along the

horizontal direction e 1 in this area, the κ32 field is approximately

constant in both grains and the κ31,2 field has a negative value

when using forward differentiation across the boundary. Hence, a

disclination density dipole is found in panel Fig. 3 d. Consistently,

a disorientation discontinuity of the order of 2 ° is seen in panel

Fig. 3 a. A disorientation discontinuity along the boundary is indeed

a beacon of the difference between the mixed second-order partial

derivatives of the elastic rotation and of the presence of a discli-

nation at this point, as already illustrated in Fig. 2 . Significant θ33 

disclinations may further be noticed in panel Fig. 3 d at the ends

of sub-grain boundaries, where they clearly correlate with discon-

tinuities in the disorientation. The analysis also provides compre-

hensive details on how the disorientation discontinuities relate to

the variations of the lattice curvatures in their neighborhood, on

both sides of the interface. Clearly, such correlations could not be

observed if the disclination density distribution were arising from

random numerical noise. 

5. Conclusions 

In this paper, we present the fundamental physical background

and complementary algorithmic information to the numerical

methods introduced in Beausir and Fressengeas (2013) and used

in Cordier et al. (2014) to determine smooth disclination density

fields from the discrete rotation data sets provided by EBSD mea-

surements. From a general standpoint, thinking of discrete orienta-

tion maps as sets of point values picked out from continuously dif-

ferentiable orientation fields or from fields encountering surfaces

of discontinuity is equally valid. However, to ensure consistency

of the present methods with classical understanding in the field

theory of crystal defects ( deWit, 1970 ), strong variations in the ro-

tation point values across bounded surfaces are viewed in this pa-

per as manifestations of discontinuities of the rotation field. Overly

regularization resulting from the interpretation of such data as

point values picked out from a continuous rotation field, as in the

algorithmic prescriptions of Leff et al. (2017) , destroys the account

of curvature incompatibility. Therefore, a one-sided finite differ-

ence scheme of the rotation along the surfaces of discontinuity is

key to the adequate derivation of the curvature field. Consistency

of the algorithm with the classical point of view of the field the-

ory of crystal defects then implies that the tangential part of the

curvature tensor be seen as continuous along the grain boundaries

in building the disclination density fields, whereas the normal part
f the curvature tensor is left unconstrained and may be discon-

inuous ( Fressengeas et al., 2012 ). This interpretation of the data

nderpins using a forward finite difference scheme in the compu-

ation of the curvature partial derivatives involved in the disclina-

ion densities, including the derivatives across the surfaces of ro-

ation discontinuity. It is worth noting that the present algorith-

ic prescriptions are not specific to the determination of disclina-

ion densities from discrete rotation maps. The analogies between

qs. (9) and (11) suggest indeed that the above arguments would

imilarly apply to displacements, distortions and dislocations if the

atter were to be determined from discrete displacement maps, as

btained for example from Digital Image Correlation methods ( Chu

t al., 1985; Sutton et al., 1986 ). In short and duplicating the above

rguments, the displacement field would need to be seen as dis-

ontinuous across some bounded surface S and one-sided differ-

ntiation would be applied to build the (elastic) distortion field U

long S . Then, because tangential continuity of U holds across sur-

ace S ( Acharya, 2007 ): 

[ U ]] × n = 0 , (17)

orward differentiation of U could be performed across S ,

hich would allow evaluating the dislocation density tensor α
hrough Eq. (9) . However, when strain incompatibility is neglected,

qs. (9) and (10) reduce to α ∼= 

tr( κ) I − κt . As a result, this ap-

roximation of α simply stems from the elastic curvatures, and

an be directly determined from an orientation map ( El-Dasher

t al., 2003; Field et al., 2005; Pantleon, 2008; Montagnat et al.,

015 ). In the absence of disclinations, the curvature tensor κ can

e seen as the gradient of the rotation vector and be computed

hrough forward differentiation of the rotation field. In the pres-

nce of disclinations, κ is no more a gradient tensor and must be

alculated from one-sided differentiation of the rotation field, as

etailed above. 
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